
Ransomware Detection∗

Julian Wolf
Friedrich-Alexander-University

Erlangen-Nuremberg
julian.jw.wolf@fau.de

ABSTRACT

Ransomware infections are increasing and approaches
to detect ransomware and protect devices are neces-
sary. Most approaches to detect cryptolockers rely
on dynamic behavioral analysis of typical ransomware
behavior like file access, filesystem activity and net-
work activity. Some approaches work with a mix of
static and dynamic analysis to detect features unique
to ransomware, like some form of ransom demand.
But since all of those techniques are highly specific
to what is considered typical ransomware behavior
it can be assumed that ransomware developers will
soon adapt to detection tools and new families with
different behavior will spread. After a discussion of
current ransomware families, a classification of de-
tection methods and discussion of research regarding
ransomware detection, a tool evaluation is presented.
Several detection tools were tested and it could be
shown that with minimum effort detection could ei-
ther be completely avoided or at least to a point
where between 30 and 50 files could be properly en-
crypted before detection.

KEYWORDS

ransomware, malware, analysis, ransomware detection

1 INTRODUCTION

Ransomware, a type of malware that uses extortion to make
victims pay ransom, became a very well known term af-
ter a huge increase in both variety and infected computers,
especially with high-profile targets like the UK’s National
Health Service or the logistics company Fed-Ex [10]. A Trend
Micro security report outlines an increase of 752% in new
ransomware families in 2016 compared to 2015, from 29 to
247 [29], their mid-year report on 2017 reports those “un-
precedented” outbreaks by WannaCry and Petya variants,
and estimates as much as USD 4 billion damage done by
WannaCry alone [28]. And even though this type of malware
experiences this huge spike and publicity recently, the idea
dates back to the 1980s, with “AIDS” (also known as PC
Cyborg) being considered one of the first Ransomware re-
ported in 1989, although the term was not yet used. Instead,
in 1996 Young and Yung wrote about “Cryptovirology” and
“Extortion-Based Security Threads” [31].

∗This paper was written as part of the conference seminar “IT Security”
which was organized by the chair of IT Security Infrastructures at the
Friedrich-Alexander-University Erlangen-Nuremberg during the winter
term 2018. Special thanks to Tobias Latzo for the provided support
during the course of this paper.

1.1 What is Ransomware?

The malware class Ransomware in general works with extor-
tion, but the details vary a lot depending on the platform and
actual implementation. The common goal is to deny access to
something important, for which the user is willing to pay ran-
som, therefore the terms denial of service or denial of access
are also not uncommon. Depending on the device and user
there are different approaches at the moment to implement
ransomware, categorized in two major groups: Cryptography
based ransomware and locker based ransomware [5].

Cryptographie based ransomware is the older class, and
was described by Young and Yung in the following way [31]:

A cryptovirus (cryptotrojan) is a computer
virus (Trojan horse) that uses a public key
generated by the author to encrypt data D
that resides on the host system, in such a
way that D can only be recovered by the au-
thor of the virus (assuming no fresh backup
exists).

That means, the malware encrypts files in a way that
only the “owner” (which does not necessary have to be the
author) of the malware can decrypt them. Implementation
details differ in used cryptography and the attack vector,
with some malware encrypting single files and others encrypt-
ing for example the Master File Table (MFT). While earlier
ransomware implementations used symmetric encryption al-
gorithms and could be decrypted easily, modern approaches
use symmetric encryption of files for performance reasons
and then asymmetric encryption to encrypt the key so that
the private key is held back and could be used to decrypt the
symmetric key after the ransom was paid [19].

The popularity of ransomware in recent years can be ex-
plained by availability of easy to use and anonymous pay-
ment options, with Bitcoin as cryptocurrency being the most
popular one recently. While the “AIDS” ransomware was
distributed via floppy disk and the ransom had to be paid as
cheque posted to Panama [11], modern ransomware spreads
via the internet, for example via email or vulnerabilities, and
the ransom is often paid to anonymous Bitcoin wallets.

The ongoing trend with an increasing number of ran-
somware infections per month can be seen in figure 1 as
provided by the Symantec Internet Security Threat Report
Ransomware 2017 [26].

With different device categories new attack vectors for
ransomware open up. While traditional desktop or server
systems usually hold a lot of important files and documents
and are vulnerable to encryption, smartphones or embedded
devices usually don’t hold important files locally (or have
a cloud backup), but are on the other hand vulnerable to



Figure 1: Ransomware infections by month, taken
from [26]

attacks the completely deny access to the device by locking
the user interface. This would not be an effective approach
on traditional desktop or server systems since they can easily
have their disk accessed through some other system, but that
usually is not an easy option on mobile and embedded devices.
This kind of malware is usually referred to as “Locker” or
“Locker-Ransomware”.

But there is also malware that pretends to be ransomware
without actually being able to recover the files or devices
once they are infected. While those do not technically fit into
the ransomware class, they still demand the ransom and rely
on users not being able to see this difference. In this paper
this will be considered as part of the ransomware class since
the used techniques are similar.

Another common component of ransomware, which was
also already part of “AIDS”, is that the message displayed
to the user often uses social engineering techniques, like
pretending that the user violates laws or license agreements
and that the user needs to pay a small fee to avoid further
fines or investigation.

Since ransomware detection relies a lot on understanding
current ransomware approaches, therefore first some more
current and widespread ransomware families will be discussed
in the following section.

1.2 Ransomware examples

1.2.1 WannaCry. The ransomware that so far got the most
publicity and attention in 2017 was called WannaCry [21, 27],
a crypto-ransomware that cause disruption by also affect-
ing several high-profile targets like the UK National Health
Service. After infecting a system, WannaCry searches for
files with specific file extensions, and encrypts them with
a separate AES encryption key, and each of those keys is
then encrypted with a RSA public key so that the RSA
private key allows for decryption. This is equivalent to the
heterogeneous approach described in the previous chapter,
combining both advantages of symmetric and asymmetric en-
cryption. WannaCry does not overwrite existing files, the new
and encrypted files are created in the working directory and
then renamed, adding the file extension .WINCRY, and then
moved to the directory of the original file. The ransomware
also tries to delete existing Windows Shadow Copies that

might exist. WannaCry uses the Windows cryptography API
for the RSA encryption and a statically linked third-party
implementation for AES operations.

1.2.2 CryptoWall. Cryptowall [6] in version 3.0 has a sim-
ilar approach, it uses AES for file encryption and RSA to
encrypt the key. That’s also the big difference to Cryptowall
in version 2.0 which used public-key encryption for the files
with performance disadvantages [23, 25]. For Cryptowall both
public and private key are generated outside of the infected
machine and the public key used for encryption is provided
by a server after the infected machine opens a connection.

1.2.3 Petya and NotPetya. The Petya [4, 15, 24] ran-
somware uses a different strategy to extortion. Instead of
relying on user privileges it tries to get administrative privi-
leges via the default Windows User Access Control (UAC).
So, for getting necessary privileges it relies on social engi-
neering by asking the user to open a letter of application, as
which the malware disguises itself. In it’s next step Petya
ransomware overwrites the Master Boot Record and makes
Windows crash with an error message and forcing a reboot
of the system (SeShutdownPrivilege and NtRaiseHardError).
Since the MBR got modified it now startes with the Petya
MBR, pretending to run a disk check while in the background
encrypting the disk. After the next reboot the ransomware
message is displayed to the user.

Special about Petya is that it is considered a wiper instead
of ransomware because of how files are encrypted with a
random key that does not have any connection to the “instal-
lation key” that is displayed to the user. So, while decryption
with the right key could be possible, in reality the key can
not be provided to the victim. Because of this and the fact
that Petya almost exclusively targets the Ukraine Symantec
considers the Petya outbreak a politically motivated attack
with the goal of disruption [26].

Similar to Petya is a modified version called NotPetya,
which has a lot of modifications. It has both the capability
to just encrypt files in user mode but also the capability to
modify the MBR and behave like Petya. Which approach
is chosen depends on the system it is run on and which
anti-virus software is running on the system [17].

1.2.4 Ordinypt. Ordinypt [8] is malware that pretends to
do file encryption and demands ransom but in reality only
overwrites data with sequences of random characters. So, in
consequence, there is no way to actually recover files from
this pseudo-encryption even though the ransom demand page
states that it is possible and the software will be provided
after payment. Therefore, Ordinypt in reality is a “wiper dis-
guised as ransomware” but for this paper shall be considered
relevant as it behaves similar to real working ransomware
and the threat, complete loss of data, is basically the same.
Therefore detection approaches should also consider this
type of malware to prevent destructive software no matter
whether the malware is actually implemented in a way that
theoretically allows recovering data or not.

2



Figure 2: Mobile Ransomware 2015/2016, taken
from [14]

1.2.5 Fusob and Small. The last example in this section
is a locker ransomware called Fusob. While for desktop or
server systems ransomware is in almost all cases a form of
cryptolocker, because that’s where important files are the
target, this approach doesn’t work for mobile devices that
usually are backed up into the cloud or some other system,
unless the attacker could also manage to destroy the backup.
But for mobile devices on the other hand the ability to
completely overlay the screen with a ransom message makes
the device unusable to the user, and the lack of access to the
device’s hardware (storage) makes it hard to recover. The
two dominant ransomware families for mobile devices are
called Fusob and Small and they make up for more than
93% of mobile ransomware in 2015 and 2016 according to
Kaspersky [14], as can be seen in figure 2.

Both families also rely on social engineering by pretending
that the message comes from government officials or agencies
like FBI or NSA.

Kaspersky’s ransomware report 2014-2016 shows how much
the amount of users encountering mobile ransomware has
changed from between 2014 and 2016 [14], the visualization
can be seen in figure 3.

1.3 Ransomware detection challenges

As the above examples have shown there’s a variety in ran-
somware techniques, that are specific to the kind of system
they target and their approach to blocking user access, so
detection approaches also need to cover a wide variety of met-
rics. The second huge problem is that ransomware operations
usually look like legitimate user operations, especially with
cryptolockers which don’t need special privileges and rely
on cryptographic operations just like legitimate applications.
Cryptolockers either implement their own cryptography or
use existing libraries. Besides that, they only need to read
and write files. And, as with any malware, ransomware is also
an arms race between malware developers and IT security
providers, where malware developers react to new counter-
measures by improving their malware, which leads to new
countermeasures and so on. For ransomware this means that
the malware could try to behave more like legitimate software
or a human user.

Figure 3: The number of users encountering mobile
ransomware at least once in the period April 2014
to March 2016, taken from [14]

Young and Yung suggested in 1996 “auditing access to
cryptographic tools” and not making cryptographic tools
available to users would reduce the risk of cryptoviruses [31]:

Incorporating strong cryptographic tools into
the operating system services layer may seem
like it would increase system security, but in
fact, it may significantly lower the security
of the system if the system is vulnerable to
infection. Furthermore, with such tools read-
ily available, virus writers would not even
have to understand cryptography to create
cryptoviruses.

With many cryptographic libraries available and many pro-
grams, and users, relying on cryptography for security and
privacy this approach is not feasible. While some cryptolock-
ers indeed use operating system libraries, if those were not
available they would ship their own or open source libraries
with the malware.

But they also suggest “implementing mechanisms to detect
viruses prior to or immediately following system infiltration”,
and this a both, a feasible and possible approach that will
be covered in the following section.

2 CLASSIFICATION

Before discussing current research on ransomware detection
this section will propose a classification of detection methods.
In general a distinction can be made between static analysis
and dynamic analysis. Static analysis is performed by look-
ing at an executable without running it, hereby extracting
information. Dynamic analysis is performed by running an
executable an analyzing it’s runtime behavior. Both meth-
ods have advantages and disadvantages and malware can
use protection mechanisms against both, making analysis
difficult.

In automated detection of malware, or ransomware in par-
ticular, static analysis plays a minor role as countermeasures

3



Figure 4: Ransomware behavior comparison, taken
from [16]

are easy to implement. Datatabase lookups of signatures
can be performed, but with self-modifying code or minor
variances this method is very limited and not able to detect
new strains of malware. Part of static analysis could also
be to check for specific function calls, analyzing strings, or,
depending on the platform, analyzing content that is shipped
with the executable. On Android, for example, it is possible
to look at the manifest and the permissions as part of static
analysis.

Dynamic analysis on the other hand, trying to analyze
runtime features of a process, has the chance of analyzing
the behavior of a process and therefore the ability to also
detect new or modified strains of ransomware.

Within dynamic analysis further distinction can be made
between content based analysis and behavior based analysis.

For behavior based analysis there’s several typical compo-
nents on ransomware behavior that can be part of a detec-
tion approach: memory behavior analysis, network behavior
analysis and filesystem behavior analysis. Those approaches
are based on the idea that ransomware has a very specific
behavior that is common to all cryptolocker ransomware im-
plementations (typical behavior also exists for other lockers):
At some point a ransom demand will be written to a file or
displayed, at some point a key exchange with a server will
happen, at some point files will deleted or overwritten. And
even though behavior can be modified to avoid detection, in
some form this behavior will be displayed by the ransomware.

Nieuwenhuizen compared different ransomware families
for behavioral features [16]. The comparison focuses on very
generic features that are not unique to ransomware and
are, even though quite common, not inherently part of ran-
somware or necessary for ransomware, therefore are not part
of this classification. The analysis nevertheless gives a good
overview about ransomware behavior, as can be seen in in
figure 4.

Dynamic analysis with the focus on content on the other
hand will try to detect ransomware by analyzing file content
that is read and written by a process. Most user processes
have a limited number of file types used for input and a

Analysis

Static Dynamic

Behavior

Memory Network Filesystem

Content

Figure 5: Ransomware detection method classifica-
tion

limited number of file types used for output. For example, a
text editor might open text documents, maybe also images,
and have text documents as output. Ransomware on the
other hand has a high number of different read file types but
little variety in the output. Content based analysis might
also consider whether a file modification is within reasonable
range, e.g. by checking similarity to the original file or by
checking entropy since encrypted files show a basically equal
distribution that usually cannot be seen in most other files.

The classification is displayed in figure 5.

3 DETECTION APPROACHES

The first part in this section will be about ransomware de-
tection approaches for cryptolockers, the second part will
discuss mobile (especially Android) lockers.

3.1 File encryption

Scaife et al. propose a behavioral analysis based on a typi-
cal behavioral signature of cryptographic ransomware which
usually falls into one of three categories [20]:

• Class A ransomware reads a file, writes the en-
crypted data in place and closes that file again.

• Class B ransomware additionally moves the file out
of it’s directory before opening and moves it back
after closing it

• Class C ransomware creates a new file in which the
encrypted data is written, and the original file is
deleted or overwritten

They use five indicators, three primary and two secondary,
which combined can indicate ransomware behavior before all
data is lost. The focus hereby is on the transformation of
encrypted files.

The first indicator is the filetype. Files usually have an
indicator for their filetype, a “magic number”. For example
PDF files start with 25 50 44 46. If something happens that
makes the filetype change this might be an indicator for
ransomware, as encrypting the whole file will also change the
magic numbers.

4



The second indicator used by the authors is similarity.
Since cryptography aims at producing output that has no
relation to the original data. Therefore, if data is changed
in a way that there is little similarity, there’s a good chance
it got encrypted. To test for dissimilarity the authors use a
similarity-preserving hash function, sdhash. Using this func-
tion they get a similarity score describing the confidence
about similarity of data. A ransomware encrypted file is ex-
pected to have a similarity score of near-zero compared to
the original file.

The third and last primary indicator is the Shannon en-
tropy, which describes the distribution of characters in a
message. While compressed or encrypted data usually has an
almost perfect distribution or high entropy, other files will
have a much lower entropy.

As secondary indicators Scaife et al. use deletion and file
type funneling. While delete-operations per se are not suspi-
cious, a big number of delete-operations in a user’s directory,
just like Class C ransomware performs it, is suspicious and
potentially malicious. File type funneling means the concept
of reading a big variety of filetypes but only writing a single
filetype. This is not something only specific about malware
since other software performs similarly (e.g. text processors),
but ransomware cryptolockers strongly show this behavior.
The authors consider the difference between types read and
types written an indicator which can be used with a threshold
for ransomware detection.

The software developed with those indicators, CryptoDrop,
uses the union of the three primary indicators for early detec-
tion. According to the authors most malware samples tested
triggered all three indicators while the majority of benign
programs did so. The authors acknowledge that CryptoDrop
has limitations and can’t distinguish encryption or compres-
sion performed by the user from a ransomware attack, and
because that leave the final decision how to proceed to the
user [20].

A similar approach, called Redemption, is suggested by
Kharraz and Kirda [12]. They suggest two categories of fea-
tures used for detection: Content-based and behavior-based.
In the content-based group they collect the features entropy
ratio of data blocks, file content overwrite, and delete op-
eration. In the behavioral category they monitor directory
traversal, converting to a specific filetype, and access fre-
quency. From these indicators the malice score of a process
is calculated.

The big difference though is that the authors don’t just
rely on early detection of ransomware for minimal damage,
but also try to avoid any damage by completely preventing
file encryption/deletion. Therefore, Redemption uses a pro-
tected memory area where all write requests on user files
are redirected. If the malice score of a process exceeds the
threshold the user is notified and the real user files are only
overwritten if the user confirms that this is not due to the
action of malware.

Additionally, Kharraz et al. suggest to use decoy files to de-
tect malicious file access. Those decoy files would be spread

all over the filesystem and if accessed could indicate ran-
somware [13]. This is also proposed as a method for intrusion
detection in general by Yuill et al. where those files are called
honeyfiles [32]. The difficulty here for ransomware detection is
that decoys are only useful if they are hit by the ransomware
very early, and that file access patterns depend a lot on the
implementation of the malware. Any patterns, also depending
on accessed file types, from bottom up, top down, new to
old, small to big, and vice versa, as well as many others, are
possible and would have to be covered by decoy files. While
this is almost impossible to completely cover, they would still
bring the advantage of detection even though maybe not at
the earliest possible point.

3.1.1 Network based. A very different method, based on
network connections, is discussed by Ahmadian et al. [1].
The authors first take a look at ransomware from a point of
view how perfect extortion looks like and provide a taxonomy.
Non-Cryptographic Ransomware (NCR) is considered a weak
technique as there is countermeasures to reverse the damages
caused. As a second group they identify Cryptographic ran-
somware CGR with the categories Private-key cryptosystem
ransomware PrCR, which is based on symmetric cryptogra-
phy and can easily be breached by analysts, and Public-key
cryptosystem ransomware PuCR, where asymmetric encryp-
tion with a public and a private key is used. The authors
conclude that this kind of ransomware is flawed due to the
fact that the public key is in the malware’s payload and a
single system can’t be freed without giving the private key
away. This could be improved by having several key pairs,
but without having a key pair per infection this method is
never a good option. Additionally asymmetric encryption at
the target system is generally slower than symmetric encryp-
tion. At last they consider Hybrid cryptosystem ransomware
(HCR) where files are encrypted with a unique symmetric
key per system, which then gets encrypted with a public key.
The system or files can be release by sending the encrypted
key to the malware writer who decrypts it using their private
key and then returns the key to decrypt the files or system.

Ahmadian et al. also define a term High survivable ran-
somware (HSR) by requirements that need to be met to have
“effective mass extortion means”:

• Infected computers should be considered compro-
mised and harmful

• The ransomware author should be the only person to
reverse the infection, therefore anything that gives
the victim a chance to reverse the infection, like
generating a private key on the infected system

• Freeing one victim should not help other victims

This leads to the final definition of HSR:

A ransomware has the “high survivability”
property if it can maintain control over a
critical host resource RC such that it grants
access to RC solely when it is needed, and

5



such that if ransomware is modified or re-
moved, RC is rendered permanently inac-
cessible and the decryption process can be
completed only by the Command & Control
server (C&C) key while the ransom is paid.

All current HSR can be found in the HCR category, there-
fore they all need to query a server for a unique public key to
encrypt the symmetric encryption key. To do this malware
often uses so called Domain Generation Algorithm (DGA),
where a domain name (with a C&C) is dynamically gener-
ated through an algorithm. This is used to make it harder
to take down a network behind a malware attack, since it
requires significantly more effort, and is more resilient, than
a hardcoded list of C&C domains.

The authors suggest a connection monitor that checks
for DGA DNS requests based on character transitions and
recognizing a gibberish query which is then blocked (Con-
nection Monitor Verifier CMV). A blocked connection for
ransomware then means that the files won’t be encrypted or
at least that the key itself can’t be encrypted. Additionally,
signing domains for valid connection requests is proposed.

According to Ahmadian et al. their framework was able to
discover all current ransomware families in the HSR category.

A similar approach is taken by Cabaj and Mazurczyk [7].
The authors in this case use Software-defined networking
(SDN) to check the DNS traffic and compare requests to
a database of known ransomware proxy servers, either by
sending a copy of DNS packages to a SDN controller or by
routing all DNS packages through a SDN controller. Blocking
or recording the malicious ransomware traffic then provides
the encryption key in case of symmetric encryption or can
block the ransomware from receiving the needed public key.

Those two approaches show that analyzing network be-
havior is possible to detect malware in general, and also
ransomware. Yet the assumptions made are limiting the ef-
fectivity of this method. First, non-cyptographic ransomware
might be weak on desktop and server systems, but as will
be discussed in section 3.2, is not that weak on mobile or
embedded systems where the memory can’t be accessed eas-
ily. Second, the approach of only considering “perfect” ran-
somware from the HSR category a real threat completely
ignores malware that does not fit into this category, like
wipers. Ordinypt, as discussed earlier, is a wiper pretending
to be ransomware, does not need network communication
and therefore would not be detected. Another aspect is that
malware could be implemented to act like a wiper if network
communication is blocked or disturbed, which would result
in file loss.

Therefore, it is clear network communication behavior is
something that works as an indicator for malware, but should
not be considered a standalone solution for ransomware de-
tection.

3.1.2 Dynamic analysis. Sgandurra et al. suggest a broader
dynamic analysis that covers several features like API invo-
cations, registry keys, file and directory operations, dropped
files, and embedded strings [22]. Their detection approach,

Features Top 400 Top 100

Registry Keys Operations 48.25% 49%
API Stats 24.00% 27%
Strings 8.25% 5%
File Extensions 8.00% 9%
Files Operations 5.25% 6%
Directory Operations 4.00% 2%
Dropped Files Extensions 2.25% 2%

Table 1: Percentage of the most relevant features for
each class, taken from [22]

EldeRan, is based on the idea that ransomware in general
will always behave in a very similar way, therefore they used
machine learning to extract those relevant features. While
they initially had over 30000 features, the most relevant ones
were quite distinct as can be seen in table 1.

3.2 Android and Embedded

Different environments face different challenges in regards to
malware as well, therefore also with ransomware. As men-
tioned earlier, in the case of mobile or embedded devices
the locked resources are generally not files or documents but
devices that are hard or costly to repair or replace. This is
not only the case for smartphones. With the concept Internet
of Things (IoT) spreading and more and more devices, like
fridges or ovens, being connected to networks/the internet,
therefore being vulnerable to malware and ransomware, those
devices definitely could be held to ransom as well. On Android
static analysis is different because of different programming
languages that are used (native code, Java) and control flows
between individual components. Dynamic analysis is different
in ways that it is in general event triggered where external
events, like SMS or sensor data, user interaction and the
system environment play a big role for malware to hide itself,
using timing features and environment analysis [18]. Addi-
tionally, Android uses a granular permission system for apps
in which the permissions are declared in the manifest file.
The ScarePakage ransomware uses permissions to lock the
device, kill other tasks, keep the device from going to sleep
and to use the internet to verify payment.

Yang et al. use four factors for static analysis of an app,
as taken from the extracted apk file:

• Permission
• Sequence of API invocations
• Resources
• APK structure

But since static analysis can not deal well with obfuscation
and encryption, the authors additionally suggest dynamic
analysis and add another four features for analysis during
runtime [30]:

• Critical path and data flow
• Malicious domain access
• Malicious charges (e.g. via SMS or calls)
• Bypassing Android Permission

6



This combined approach of dynamic and static analysis
is also used by Andronio et al. for the detection tool HEL-
DROID [2].

The authors designed HELDROID with three main com-
ponents: The Threatening Text Detector, the Encryption
Detector and the Locking Detector. The constraint is that
both scareware and ransomware would use threatening text,
so if a sample does not trigger the Threatening Text Detector
it is not considered ransomware or scareware. The performed
text analysis is done both static and dynamic, first from
inspecting the binary and resource files and then running
the app in a sandbox while inspecting allocated memory and
communications. The analysis for encryption is done through
static flow analysis and corresponding API calls. The Lock-
ing detector works with heuristics on execution paths and is
performed static as well.

To counter these detection methods malware could deliver
the threatening text via images and make those images hard
to decipher for text detection algorithms (like a captcha) and
deliver it’s own encryption functions instead of the Android
API. But the authors claim no such malware has been found
to they point where they conducted their research.

Azmoodeh et al. suggest a different method for detecting
cryptlocker ransomware on IoT devices: Based on a processes
energy footprint. With this approach the authors only target
cryptolockers since those have a unique energy fingerprint,
and lockers on the other hand wouldn’t have this. The au-
thors used machine learning of existing cryptolocker samples
on different Android devices to generate ransomware finger-
prints and showed that it is possible to distinguish between
goodware and cryptolockers based on this criteria [3].

4 TEST OF AVAILABLE DETECTION
TOOLS

After handling the theoretical background of ransomware
this section will point out some tests that were done with
existing available ransomware detection tools. Even though
there is suggestions about detecting ransomware with network
monitoring no evidence could be found that this is used in any
of the available tools. Additionally, even malware that acts
more like a wiper than ransomware (e.g. Ordinypt) should
be detectable even though it does not use a key exchange.

A simple ransomware (Jamsomware) was implemented so
that signature based detection would not be possible and
detection methods could be tested. The focus hereby was
not to develop good or the best ransomware but more to
develop a simple implementation that uses the most common
techniques. Jamsomware falls in the Class C according to
Scaife et al., it creates a new file and then deletes the original
file. It is fully implemented in Python (packed as a single
executable file with pyinstaller) using the Cryptodome library
for AES symmetric encryption of files with a key randomly
generated on the system.

Instead of encrypting the symmetric key with an asym-
metric encryption algorithm it is just stored in plain text on
the disk. This is based on the assumption that encrypting

the symmetric key again would not bring any benefit for
detection. Therefore, there also is no key exchange with a
server (for either receiving a public or sending a private key)
but with the focus on local filesystem based detection this
neither influences the experiment.

It takes several parameters that could be a directory as
entry point or an existing key. If it is started without any
parameters it will create a new random key and start iterating
through the current user’s home directory. Encountering a
directory it creates a copy of the original binary and starts
it as a new process with the encountered directory and the
encryption key as parameters, found files matching a pattern
for the name extension get encrypted immediately.

All created subprocesses will delay their execution ran-
domly for 5-10 seconds and every subprocess behaves just
like the original one, encrypting files and creating new sub-
processes (with their own executable each) for every directory.
Every subprocess also deletes its executable after finishing.

The goal of this multiprocessing with separate executables
implementation is to disguise the malicious behavior and to
not raise thresholds for single processes. Additionally, this
recursive multiprocessing approach (with random delays) has
the advantage that filesystem traversal is less obvious and
that a single blocked process or quarantined executable will
only prevent Jamsomware from accessing a branch of the
filesystem tree, not completely stop it. This could be further
improved in the future by first creating all new recursive
processes before attacking files.

Another technique Jamsomware uses to disguise its opera-
tions is not encrypting the first block (16 Bytes) of every file.
This is based on the CryptoDrop indicator that checks for
changed filetypes.

The target machine for testing was a virtual Windows 10
system with a relatively small user home directory of 296
relevant files from different types targeted by Jamsomware,
(text-) documents and media files. The files are spread in
30 (sub-) directories with directories containing between one
and over 100 files.

Four different protection tools were tested with Jamsomware:
CryptoDrop, McAfee Ransomware Interceptor, Avast Premier
Behavior Shield, Bitdefender Anti-Ransomware Tool. All tools
are commercial closed source applications and with the ex-
ception CryptoDrop (see section 3.1) no knowledge about
the detection approach of those tools was available.

CryptoDrop1 discovered the ransomware after some min-
utes (depending on the file structure and random delays),
suspended the process and asked for user confirmation to
enter lockdown mode where the protected area is mapped
read-only and files therefore can’t be deleted anymore. A
lockdown mode has the advantage that no matter how many
malicious processes are running and disguised, one being
discovered is enough to protect the files. Requiring user input
before entering this mode has the disadvantage of delayed
reaction to ransomware discoveries, but a compromise in
regards to user acceptance where lockdown mode in case of a

1https://www.cryptodrop.org/

7



Figure 6: Cryptodrop suspended process

Figure 7: Cryptodrop in lockdown mode

false positive would not find acceptance. Cryptodrop’s reac-
tion to discovering ransomware can be seen in figures 6 and
7. As can be seen there Cryptodrop also offers a restoration
option to recover lost files, but this a premium feature not
available in the free version and was not further investigated
as part of this work.

In total between 36 and 44 files could be encrypted and
deleted before this happened. Several files only got encrypted
but the delete operation on the original file couldn’t be
performed anymore. Another approach which didn’t use a
delete operation but instead tried to overwrite the original
files with random characters with a distribution similar to
the one of the character frequency of the English language
to influence the entropy. In this case only two files could be
overwritten before CryptoDrop recognized the file tampering.

The McAfee Ransomware Interceptor pilot version2, which
“is an early detection tool that tries to prevent file encryption
attempts by ransomware malware”, was not able to discover
Jamsomware. While there is little information on how it
works it claims not being “a static detection tool” but indeed
being for early detection and prevention, therefore it was
expected to detect the file encryption. Similar results could
be observed with Bitdefender Anti-Ransomware Tool3 where
all files could be encrypted and deleted without detection.

Avast Premier, which includes a module for ransomware
detection, Behavior shield4, detected Jamsomware as well
with around 50 encrypted and deleted files.

The results can also be seen in figure 8.

2https://www.mcafee.com/us/downloads/free-tools/how-to-use-
interceptor.aspx
3https://www.bitdefender.com/solutions/anti-ransomware-tool.html
4https://blog.avast.com/behavior-shield-our-newest-behavioral-
analysis-technology

McAfee Bitdefender Avast Cryptodrop

100

200

300

Figure 8: Number of encrypted and deleted files out
of a total of 296

It could be shown that with very little effort ransomware de-
tection could be partially avoided or delayed for long enough
to have several files encrypted and that relying on those
tools alone is not sufficient to protect important data from
malware.

Several other features to prevent detection could be ad-
ditionally implemented but are out of scope for this paper.
While the multiprocessing approach seems very promising
there’s a lot of room for improvement. Future work might
include an approach using a single process per file, in a coor-
dinated matter, or implementing smarter methods of deleting
the original content after encryption.

5 CONCLUSION

Different research has be done on the topic of ransomware
detection and already covered a variety of methods on how
to discover malware from the ransomware family, both lock-
ers and cryptolockers, on different platforms. For Android
systems where lockers play a bigger role than cryptolockers
a mix of static and dynamic application analysis on several
factors like strings, application permissions, control flow and
API calls.

For desktop and server systems, where cryptolockers are a
dangerous threat the detection approaches mostly work with
behavioral analysis by using behavioral patterns of current
and past ransomware to identify such processes from mere
process behavior.

The downside in both cases is that all analyzed approaches
are very specifically tailored to how ransomware works today.
In most cases common techniques of ransomware were used
to build a detection system tailored to those criteria.

Trying to catch the key exchange via network communica-
tion can be a successful approach if that is what the malware
does, if the traffic can be identified and intercepted, and
if the malware doesn’t have a module for the case of key
interception - like encrypting with a random key that would

8



Figure 9: Redemption protective model, taken from [12]

lead to data loss. This is also not something that would help
with a wiper pretending to be ransomware, like Ordinypt,
and therefore would cause complete data loss as well.

Additionally, most behavioral detection approaches try
to detect ransomware as soon as possible - but can’t really
prevent loss up to the point where the malware is detected
and stopped. This could be shown using Jamsomware to test
available ransomware detection tools with the result that two
out of four tools didn’t detect the ransomware at all and the
other tools detected the ransomware too late to prevent data
loss.

Therefore, additional safety barriers to protect user data
from encryption should be used as shown by redemption
where potentially bad actions are executed in a different
memory region and only transferred if not discovered as
coming from a malicious process. This has been shown as
part of Redemption as discussed in section 3.1 and also been
proposed by Continella et al. as ShieldFS, “A Self-healing,
Ransomware-aware Filesystem” [9]. Just like Redemption,
ShieldFS shadows write operations while at the same time
trying to identify malicious processes.

In both cases a module is introduced protecting files from
malicious processes by introducing a protective layer and
having processes work on copies while still keeping a origi-
nal file in a protected region. The implementation used by
Redemption can be seen in figure 9. Instead of passing write
requests to the original files, those requests are performed in
the protected area and monitored for potential ransomware
behavior. Operations that are not considered harmful, like
creating a new files, are not changed and performed like
before.

But even then those systems rely on detection before writ-
ing the data through to the original file. With detection tools
catching up on ransomware, measures to avoid detection
will be implemented and the arms race continues. And since
all discussed methods are just reactive to how ransomware
works at the moment, new families will emerge that won’t
be detectable due to different behavior and cause damage

unless new protective systems for user data or devices will
be implemented.

Until better protection techniques are developed a com-
bined strategy of static and dynamic detection methods, with
as many behavioral factors as possible, should become part
of basic protective procedures. But real protection, where no
data loss through ransomware happens, requires that data is
properly backed up to locations that are not accessible for
processes running with user privileges.

Additionally, kernel level security is just as relevant as de-
tecting ransomware running as a user process. If ransomware
manages to run with kernel privileges, either by tricking a
user or exploiting a vulnerability, all protective models and
detection approaches can be disabled and data loss cannot be
prevented. In this case, offline backups are what can prevent
a catastrophic outcome for users and companies.

9



REFERENCES
[1] M. M. Ahmadian, H. R. Shahriari, and S. M. Ghaffarian. 2015.

Connection-monitor connection-breaker: A novel approach for
prevention and detection of high survivable ransomwares. In 2015
12th International Iranian Society of Cryptology Conference
on Information Security and Cryptology (ISCISC). 79–84. DOI:
http://dx.doi.org/10.1109/ISCISC.2015.7387902

[2] Nicoló Andronio, Stefano Zanero, and Federico Maggi. 2015. Hel-
droid: Dissecting and detecting mobile ransomware. In Interna-
tional Workshop on Recent Advances in Intrusion Detection.
Springer, 382–404.

[3] Amin Azmoodeh, Ali Dehghantanha, Mauro Conti, and Kim-
Kwang Raymond Choo. 2017. Detecting crypto-ransomware in
IoT networks based on energy consumption footprint. Journal of
Ambient Intelligence and Humanized Computing (23 Aug 2017).
DOI:http://dx.doi.org/10.1007/s12652-017-0558-5

[4] Tim Berghoff. 2016. Ransomware Petya - a technical review.
(2016). https://www.gdatasoftware.com/blog/2016/03/28226-
ransomware-petya-a-technical-review Accessed: 06.12.2017.

[5] Akashdeep Bhardwaj, Vinay Avasthi, Hanumat Sastry, and GVB
Subrahmanyam. 2016. Ransomware digital extortion: a rising
new age threat. Indian Journal of Science and Technology 9
(2016), 14.

[6] Krzysztof Cabaj, Piotr Gawkowski, Konrad Grochowski, and
Dawid Osojca. 2015. Network activity analysis of CryptoWall
ransomware. Przeglad Elektrotechniczny 91, 11 (2015), 201–204.

[7] K. Cabaj and W. Mazurczyk. 2016. Using Software-Defined
Networking for Ransomware Mitigation: The Case of Cryp-
toWall. IEEE Network 30, 6 (November 2016), 14–20. DOI:
http://dx.doi.org/10.1109/MNET.2016.1600110NM

[8] Catalin Cimpanu. 2017. Ordinypt Ransomware Intention-
ally Destroys Files, Currently Targeting Germany. (2017).
https://www.bleepingcomputer.com/news/security/ordinypt-
ransomware-intentionally-destroys-files-currently-targeting-
germany/ Accessed: 06.12.2017.

[9] Andrea Continella, Alessandro Guagnelli, Giovanni Zingaro,
Giulio De Pasquale, Alessandro Barenghi, Stefano Zanero, and
Federico Maggi. 2016. ShieldFS: A Self-healing, Ransomware-
aware Filesystem. In Proceedings of the 32Nd Annual Confer-
ence on Computer Security Applications (ACSAC ’16). ACM,
New York, NY, USA, 336–347. DOI:http://dx.doi.org/10.1145/
2991079.2991110

[10] European Union Agency for Law Enforcement Coop-
eration (Europol). 2017. INTERNET ORGANISED
CRIME THREAT ASSESSMENT (IOCTA) 2017. (2017).
https://www.europol.europa.eu/activities-services/main-
reports/internet-organised-crime-threat-assessment-iocta-2017
Accessed: 06.12.2017.

[11] Nikolai Hampton and Zubair A Baig. 2015. Ransomware: Emer-
gence of the cyber-extortion menace. (2015).

[12] Amin Kharraz and Engin Kirda. 2017. Redemption: Real-Time
Protection Against Ransomware at End-Hosts. In International
Symposium on Research in Attacks, Intrusions, and Defenses.
Springer, 98–119.

[13] Amin Kharraz, William Robertson, Davide Balzarotti, Leyla Bilge,
and Engin Kirda. 2015. Cutting the Gordian Knot: A Look
Under the Hood of Ransomware Attacks. Springer International
Publishing, Cham, 3–24. DOI:http://dx.doi.org/10.1007/978-3-
319-20550-2 1

[14] Kaspersky Lab. 2016. KSN Report: Mobile ransomware in 2014-
2016. (2016). https://securelist.com/files/2016/06/KSN Report
Ransomware 2014-2016 final ENG.pdf Accessed: 06.12.2017.

[15] Malwarebytes Labs. 2017. Petya - Taking Ransomware To The
Low Level . (2017). https://blog.malwarebytes.com/threat-
analysis/2016/04/petya-ransomware/ Accessed: 06.12.2017.

[16] Daniel Nieuwenhuizen. 2017. A behavioural-based approach to
ransomware detection. Whitepaper. MWR Labs Whitepaper
(2017).

[17] Erin Noerenberg. 2017. NotPetya Technical Analysis. (2017).
https://logrhythm.com/blog/notpetya-technical-analysis/ Ac-
cessed: 06.12.2017.

[18] Siegfried Rasthofer, Irfan Asrar, Stephan Huber, and Eric Bodden.
2015. How current android malware seeks to evade automated
code analysis. In IFIP International Conference on Information
Security Theory and Practice. Springer, 187–202.

[19] Kevin Savage, Peter Coogan, and Hon Lau. 2015. The evolution
of ransomware. Symantec, Mountain View (2015).

[20] Nolen Scaife, Henry Carter, Patrick Traynor, and Kevin RB But-
ler. 2016. Cryptolock (and drop it): stopping ransomware attacks
on user data. In Distributed Computing Systems (ICDCS), 2016
IEEE 36th International Conference on. IEEE, 303–312.

[21] Secureworks. 2017. WCry Ransomware Analysis. (2017). https:
//www.secureworks.com/research/wcry-ransomware-analysis Ac-
cessed: 06.12.2017.

[22] Daniele Sgandurra, Luis Muñoz-González, Rabih Mohsen, and
Emil C. Lupu. 2016. Automated Dynamic Analysis of Ran-
somware: Benefits, Limitations and use for Detection. CoRR
abs/1609.03020 (2016). arXiv:1609.03020 http://arxiv.org/abs/
1609.03020

[23] Sophos. 2015. The current state of ransomware: CryptoWall.
(2015). https://news.sophos.com/en-us/2015/12/17/the-current-
state-of-ransomware-cryptowall/ Accessed: 06.12.2017.

[24] Jason Sumalapao. 2016. PETYA Crypto-ransomware Overwrites
MBR to Lock Users Out of Their Computers. (2016). http:
//blog.trendmicro.com/trendlabs-security-intelligence/petya-
crypto-ransomware-overwrites-mbr-lock-users-computers/
Accessed: 06.12.2017.

[25] Symantec. 2016. Ransom.Cryptowall. (2016). https:
//www.symantec.com/security response/writeup.jsp?docid=
2014-061923-2824-99&tabid=2 Accessed: 06.12.2017.

[26] Symantec. 2017. Internet Security Threat Report ISTR Ran-
somware 2017. (2017). https://www.symantec.com/content/dam/
symantec/docs/security-center/white-papers/istr-ransomware-
2017-en.pdf Accessed: 06.12.2017.

[27] Symantec. 2017. Ransom.Wannacry. (2017). https:
//www.symantec.com/security response/writeup.jsp?docid=
2017-051310-3522-99&tabid=2 Accessed: 06.12.2017.

[28] Trend Micro. 2017. 2017 Midyear Security Roundup: The Cost
of Compromise. (2017). https://documents.trendmicro.com/
assets/rpt/rpt-2017-Midyear-Security-Roundup-The-Cost-of-
Compromise.pdf Accessed: 06.12.2017.

[29] Trend Micro. 2017. TrendLabs 2016 Security Roundup:
A Record Year for Enterprise Threats. (2017). https:
//documents.trendmicro.com/assets/rpt/rpt-2016-annual-
security-roundup-a-record-year-for-enterprise-threats.pdf
Accessed: 06.12.2017.

[30] Tianda Yang, Yu Yang, Kai Qian, Dan Chia-Tien Lo, Ying Qian,
and Lixin Tao. 2015. Automated detection and analysis for an-
droid ransomware. In High Performance Computing and Com-
munications (HPCC), 2015 IEEE 7th International Symposium
on Cyberspace Safety and Security (CSS), 2015 IEEE 12th
International Conferen on Embedded Software and Systems
(ICESS), 2015 IEEE 17th International Conference on. IEEE,
1338–1343.

[31] A. Young and Moti Yung. 1996. Cryptovirology: extortion-
based security threats and countermeasures. In Proceedings 1996
IEEE Symposium on Security and Privacy. 129–140. DOI:
http://dx.doi.org/10.1109/SECPRI.1996.502676

[32] J. Yuill, M. Zappe, D. Denning, and F. Feer. 2004. Honeyfiles: de-
ceptive files for intrusion detection. In Proceedings from the Fifth
Annual IEEE SMC Information Assurance Workshop, 2004.
116–122. DOI:http://dx.doi.org/10.1109/IAW.2004.1437806

10

http://dx.doi.org/10.1109/ISCISC.2015.7387902
http://dx.doi.org/10.1007/s12652-017-0558-5
https://www.gdatasoftware.com/blog/2016/03/28226-ransomware-petya-a-technical-review
https://www.gdatasoftware.com/blog/2016/03/28226-ransomware-petya-a-technical-review
http://dx.doi.org/10.1109/MNET.2016.1600110NM
https://www.bleepingcomputer.com/news/security/ordinypt-ransomware-intentionally-destroys-files-currently-targeting-germany/
https://www.bleepingcomputer.com/news/security/ordinypt-ransomware-intentionally-destroys-files-currently-targeting-germany/
https://www.bleepingcomputer.com/news/security/ordinypt-ransomware-intentionally-destroys-files-currently-targeting-germany/
http://dx.doi.org/10.1145/2991079.2991110
http://dx.doi.org/10.1145/2991079.2991110
https://www.europol.europa.eu/activities-services/main-reports/internet-organised-crime-threat-assessment-iocta-2017
https://www.europol.europa.eu/activities-services/main-reports/internet-organised-crime-threat-assessment-iocta-2017
http://dx.doi.org/10.1007/978-3-319-20550-2_1
http://dx.doi.org/10.1007/978-3-319-20550-2_1
https://securelist.com/files/2016/06/KSN_Report_Ransomware_2014-2016_final_ENG.pdf
https://securelist.com/files/2016/06/KSN_Report_Ransomware_2014-2016_final_ENG.pdf
https://blog.malwarebytes.com/threat-analysis/2016/04/petya-ransomware/
https://blog.malwarebytes.com/threat-analysis/2016/04/petya-ransomware/
https://logrhythm.com/blog/notpetya-technical-analysis/
https://www.secureworks.com/research/wcry-ransomware-analysis
https://www.secureworks.com/research/wcry-ransomware-analysis
http://arxiv.org/abs/1609.03020
http://arxiv.org/abs/1609.03020
http://arxiv.org/abs/1609.03020
https://news.sophos.com/en-us/2015/12/17/the-current-state-of-ransomware-cryptowall/
https://news.sophos.com/en-us/2015/12/17/the-current-state-of-ransomware-cryptowall/
http://blog.trendmicro.com/trendlabs-security-intelligence/petya-crypto-ransomware-overwrites-mbr-lock-users-computers/
http://blog.trendmicro.com/trendlabs-security-intelligence/petya-crypto-ransomware-overwrites-mbr-lock-users-computers/
http://blog.trendmicro.com/trendlabs-security-intelligence/petya-crypto-ransomware-overwrites-mbr-lock-users-computers/
https://www.symantec.com/security_response/writeup.jsp?docid=2014-061923-2824-99&tabid=2
https://www.symantec.com/security_response/writeup.jsp?docid=2014-061923-2824-99&tabid=2
https://www.symantec.com/security_response/writeup.jsp?docid=2014-061923-2824-99&tabid=2
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/istr-ransomware-2017-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/istr-ransomware-2017-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/istr-ransomware-2017-en.pdf
https://www.symantec.com/security_response/writeup.jsp?docid=2017-051310-3522-99&tabid=2
https://www.symantec.com/security_response/writeup.jsp?docid=2017-051310-3522-99&tabid=2
https://www.symantec.com/security_response/writeup.jsp?docid=2017-051310-3522-99&tabid=2
https://documents.trendmicro.com/assets/rpt/rpt-2017-Midyear-Security-Roundup-The-Cost-of-Compromise.pdf
https://documents.trendmicro.com/assets/rpt/rpt-2017-Midyear-Security-Roundup-The-Cost-of-Compromise.pdf
https://documents.trendmicro.com/assets/rpt/rpt-2017-Midyear-Security-Roundup-The-Cost-of-Compromise.pdf
https://documents.trendmicro.com/assets/rpt/rpt-2016-annual-security-roundup-a-record-year-for-enterprise-threats.pdf
https://documents.trendmicro.com/assets/rpt/rpt-2016-annual-security-roundup-a-record-year-for-enterprise-threats.pdf
https://documents.trendmicro.com/assets/rpt/rpt-2016-annual-security-roundup-a-record-year-for-enterprise-threats.pdf
http://dx.doi.org/10.1109/SECPRI.1996.502676
http://dx.doi.org/10.1109/IAW.2004.1437806

	Abstract
	1 Introduction
	1.1 What is Ransomware?
	1.2 Ransomware examples
	1.3 Ransomware detection challenges

	2 Classification
	3 Detection Approaches
	3.1 File encryption
	3.2 Android and Embedded

	4 Test of available detection tools
	5 Conclusion
	References

